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My Background
● Java Developer for over 10 years

● Background in Spring, Hibernate, Spring Security

● Full-time Grails developer since February 2008

● Regular contributor on the Grails User mailing list

● Primary developer of Spring Security (Acegi) Grails plugin

● Created UI Performance, Datasources, Twitter, Spring MVC, 

and CodeNarc Grails plugins

● Technical Editor of Grails in Action

● 2008 Groovy Award winner

● http://burtbeckwith.com/blog/

● http://twitter.com/burtbeckwith

http://grails.markmail.org/search/?q=#query:list:org.codehaus.grails.user+page:1+state:facets
http://grails.org/plugin/acegi
http://grails.org/plugin/ui-performance
http://grails.org/plugin/datasources
http://grails.org/plugin/twitter
http://grails.org/plugin/springmvc
http://grails.org/plugin/codenarc
http://www.manning.com/gsmith/
http://burtbeckwith.com/blog/
http://twitter.com/burtbeckwith


  

Standard Grails One-to-Many

class Library {

String name

static hasMany = [visits: Visit]
}

class Visit {

String personName
Date visitDate = new Date()

static belongsTo = [library: Library]
}

Library has many Visits:



  

Standard Grails One-to-Many (cont.)

Library library = new Library(name: 'Carnegie').save()
...
library.addToVisits(new Visit(personName:'me'))
library.save()
...
library.addToVisits(new Visit(personName:'me2'))
library.save()

Usage:

● object-oriented approach to recording each visit to a library

● convenience method addToVisits() (along with corresponding 
removeFromVisits()) handles adding to/removing from mapped 
collection and cascading the save/delete



  

Standard Grails One-to-Many (cont.)

create table library (
id bigint generated by default as identity (start with 1),
version bigint not null,
name varchar(255) not null,
primary key (id)

);

create table visit (
id bigint generated by default as identity (start with 1),
version bigint not null,
library_id bigint not null,
person_name varchar(255) not null,
visit_date timestamp not null,
primary key (id)

);

alter table visit add constraint FK6B04D4B4AEC8BBA
foreign key (library_id) references library;

DDL (use “grails schema-export” to generate):



  

So What's the Problem?
● “hasMany = [visits: Visit]” creates a Set 
(org.hibernate.collection.PersistentSet) in Library – the “inverse” 
collection in traditional Hibernate

● Adding to the Set requires loading all instances from the database to 
guarantee uniqueness, even if you know the new item is unique

● Likewise for a mapped List – Hibernate pulls the entire collection to 
maintain the correct order, even if you're adding to the end of the list

● In traditional Hibernate you could map the collection as a Bag, which 
is just a regular Collection with no ordering or uniqueness guarantees, 
but Grails doesn't support Bags



  

So What's the Problem? (cont.)
● You get a false sense of security since it's a lazy-loaded collection 
(by default); loading a Library doesn't load all Visits, but that's only 
partially helpful

● Works fine in development when you only have a few Visits, but 
imagine when you deploy to production and you have 1,000,000 Visits 
and want to add one more

● Risk of artificial optimistic locking exceptions; altering a mapped 
collection bumps the version, so simultaneous Visit creations can 
break but shouldn't



  

Demo



  

Ok, So What's the Solution?

class Library {
String name

}

class Visit {
String personName
Date visitDate = new Date()
Library library

}

Remove the collection:



  

How does that affect usage?
Library library = new Library(name: 'Carnegie').save()
...
new Visit(personName:'me', library: library).save()
...
new Visit(personName:'me2', library: library).save()

● Different syntax for persisting a Visit

● No cascading; to delete a Library you need to delete its Visits first

● If you want to know all Visits for a Library, use a custom finder:
● def visits = Visit.findAllByLibrary(library)

● This is actually significantly more convenient since you can query for 
the 10 most recent, just last month's visits, etc.:

● def last10 = Visit.executeQuery(
               "from Visit v order by visitDate desc", [max: 10])



  

How does this affect DDL?

create table library (
id bigint generated by default as identity (start with 1),
version bigint not null,
name varchar(255) not null,
primary key (id)

);

create table visit (
id bigint generated by default as identity (start with 1),
version bigint not null,
library_id bigint not null,
person_name varchar(255) not null,
visit_date timestamp not null,
primary key (id)

);

alter table visit add constraint FK6B04D4B4AEC8BBA
foreign key (library_id) references library;

Not at all, both approaches set visit.library_id:



  

Standard Grails Many-to-Many

class User {
static hasMany = [roles: Role]

String username
}

class Role {

static belongsTo = User
static hasMany = [users: User]

String name
}

User has many Roles, Roles have many Users:



  

Standard Grails Many-to-Many (cont.)

Role roleUser = new Role(name: 'ROLE_USER').save()
Role roleAdmin = new Role(name: 'ROLE_ADMIN').save()
…
User user1 = new User(username:'user1')
user1.addToRoles(roleUser)
user1.save()
...
User user2 = new User(username:'user2')
user2.addToRoles(roleAdmin)
user2.save()

Usage:

● object-oriented approach to assigning a Role to a User

● syntax is very similar to One-to-many

● convenience method addToRoles() (along with corresponding 
removeFromRoles()) handles adding to/removing from mapped 
collection and cascading the save/delete



  

Standard Grails Many-to-Many (cont.)

create table role (
id bigint generated by default as identity (start with 1),
version bigint not null,
name varchar(255) not null,
primary key (id)

);

create table user (
id bigint generated by default as identity (start with 1),
version bigint not null,
username varchar(255) not null,
primary key (id)

);

create table user_roles (
user_id bigint not null,
role_id bigint not null,
primary key (user_id, role_id)

);

alter table user_roles add constraint FK7342994952388A1A foreign key (role_id) references role;
alter table user_roles add constraint FK73429949F7634DFA foreign key (user_id) references user;

DDL (use “grails schema-export” to generate):



  

So What's the Problem?
● “hasMany = [users: User]” and “hasMany = [roles: Role]” create a Set 
(org.hibernate.collection.PersistentSet) in both User and Role

● Adding a Role to a User's 'roles' Set requires loading all instances of 
the User's Roles (for uniqueness check) AND all other Users who 
already have that Role from the database

● This is because Grails automatically maps both collections for you 
and populates both - “user.addToRoles(role)” and 
“role.addToUsers(user)” are equivalent because it's bidirectional

● Works fine in development when you only have a few Users, but 
imagine when you deploy to production and you have 1,000,000 
registered site users with ROLE_MEMBER and want to add one more

● Risk of artificial optimistic locking exceptions; altering a mapped 
collection bumps the version, so simultaneous Role grants can break 
but shouldn't



  

Demo



  

Ok, So What's the Solution?
Remove the collections and map the join table:

class User {
String username

}

class Role {
String name

}

class UserRole implements Serializable {
User user
Role role
static mapping = {

table 'user_roles'
version false
id composite: ['user', 'role']

}
}



  

Ok, So What's the Solution? (cont.)

class UserRole implements Serializable {

...

static UserRole create(User user, Role role, boolean flush = false) {
UserRole userRole = new UserRole(user: user, role: role)
userRole.save(flush: flush, insert: true)
return userRole

}

static boolean remove(User user, Role role, boolean flush = false) {
UserRole userRole = UserRole.findByUserAndRole(user, role)
return userRole ? userRole.delete(flush: flush) : false

}

static void removeAll(User user) {
executeUpdate(

"DELETE FROM UserRole WHERE user=:user", [user: user])
}

}

Plus we can add in some helper methods to UserRole:



  

Ok, So What's the Solution? (cont.)

class User {

String username

Set<Role> getRoles() {
UserRole.findAllByUser(this).collect { it.role } as Set

}

boolean hasRole(Role role) {
return UserRole.countByUserAndRole(this, role) > 0

}
}

and restore a 'roles' pseudo-collection back in User:



  

How does that affect usage?

● Different syntax for granting a Role

● No cascading; to delete a User you you need to delete (disassociate) 
its Roles first (use UserRole.removeAll(User user))

● In the unlikely case that you want to know all Users with a Role, use 
a custom finder:

● def users = UserRole.findAllByUser(role).collect { it.user } as Set

User user = …
Role role = …
UserRole.create user, role
 – or –
UserRole.remove user, role



  

So Never Use Mapped Collections?
● No, you need to examine each case

● The standard approach is fine if the collections are reasonably small 
– both sides in the case of Many-to-Many

● The collections will contain proxies, so they're smaller than real 
instances until initialized, but still a memory concern



  

Using Hibernate 2nd Level Cache

dataSource {
pooled = true
driverClassName = 'com.mysql.jdbc.Driver'
url = ...
username = ...
password = ...
dialect = org.hibernate.dialect.MySQL5InnoDBDialect

}

hibernate {
cache.use_second_level_cache = true
cache.use_query_cache = true
cache.provider_class = 'org.hibernate.cache.EhCacheProvider'

}

DataSource.groovy:



  

Mapping in Domain Class
class Book {

…
static mapping = {

cache true
}

}

class Country {
…
static mapping = {

cache usage: 'read-only'
}

}

class Author {
static hasMany = [books:Book]
static mapping = {

books cache: true
}

}



  

Usage Notes
● The 1st level cache is the Hibernate Session

● Can significantly reduce database load by keeping instances in 
memory

● Can be distributed between multiple servers to let one instance load 
from the database and share updated instances, avoiding extra 
database trips

● “cache true” creates a read-write cache, best for read-mostly objects 
since frequently-updated objects will result in excessive cache 
invalidation (and network traffic when distributed)

● “cache usage: 'read-only'” creates a read-only cache, best for lookup 
data (e.g. Countries, States, Zip Codes, Roles, etc.) that never change

● DomainClass.get() always uses the 2nd-level cache

● By default nothing else always uses the cache but can be overridden



  

Configuring with ehcache.xml
● If you don't create an ehcache.xml file in the classpath (either grails-
app/conf or src/java) EhCache will use built-in defaults and you'll see 
warnings at startup

<ehcache>

<diskStore path="java.io.tmpdir" />

<defaultCache
maxElementsInMemory="10000"
eternal="false"
...

/>

<cache name="com.foo.bar.Thing"
maxElementsInMemory="10000"
eternal="false"
overflowToDisk="false"
maxElementsOnDisk="0"

/>



  

Configuring with ehcache.xml (cont.)

<cache name="com.foo.bar.Zipcode"
maxElementsInMemory="100000"
eternal="true"
overflowToDisk="false"
maxElementsOnDisk="0"

/>

<cache name="org.hibernate.cache.StandardQueryCache"
maxElementsInMemory="50"
eternal="false"
overflowToDisk="false"
maxElementsOnDisk="0"
timeToLiveSeconds="120"

/>
<!-- timestamps of the most recent updates to queryable tables -->
<cache name="org.hibernate.cache.UpdateTimestampsCache"

maxElementsInMemory="5000"
eternal="true"
overflowToDisk="false"
maxElementsOnDisk="0"

/>
</ehcache>



  

Query Cache

def criteria = DomainClass.createCriteria()
def results = criteria.list {

cacheable(true)
}

Criteria queries:

DomainClass.withSession { session ->
return session.createQuery(

"select ... from … where ...")
.setCacheable(true)
.list()

}
}

HQL queries:

def person = Person.findByFirstName("Fred", [cache:true])

In dynamic finders (new in 1.1)



  

Hibernate query cache considered harmful?

● Most queries are not good candidates for caching; must be same query 
and same parameters

● DomainClass.list() is a decent candidate if there aren't any (or many) 
updates and the total number isn't huge

● Great blog post by Alex Miller (of Terracotta) 
http://tech.puredanger.com/2009/07/10/hibernate-query-cache/

http://tech.puredanger.com/2009/07/10/hibernate-query-cache/


  

2nd Level Cache API

● evict one instance
● sessionFactory.evict(DomainClass, id)

● evict all instances
● sessionFactory.evict(DomainClass)

● evict one instance's collection
● sessionFactory.evictCollection('DomainClass.collectionName', id)

● evict all of DomainClass' collections
● sessionFactory.evictCollection('DomainClass.collectionName')

● Map cacheEntries = sessionFactory.statistics
        .getSecondLevelCacheStatistics(regionName)
        .entries



  

● sessionFactory.statistics (org.hibernate.stat.Statistics) methods:

● statistics.queryCacheHitCount

● statistics.queryCacheMissCount

● statistics.queryCachePutCount

● statistics.secondLevelCacheHitCount

● statistics.secondLevelCacheMissCount

● statistics.secondLevelCachePutCount

● statistics.secondLevelCacheRegionNames

2nd Level Cache API (cont.)



  

● statistics.getSecondLevelCacheStatistics(cacheName) 
(org.hibernate.stat.SecondLevelCacheStatistics) methods:

● cacheStatistics.elementCountInMemory

● cacheStatistics.elementCountOnDisk

● cacheStatistics.hitCount

● cacheStatistics.missCount

● cacheStatistics.putCount

● cacheStatistics.sizeInMemory

2nd Level Cache API (cont.)
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