

Grails Persistence Tips and Gotchas

Boston Grails Users' Group

August 5, 2009

Burt Beckwith

My Background
● Java Developer for over 10 years

● Background in Spring, Hibernate, Spring Security

● Full-time Grails developer since February 2008

● Regular contributor on the Grails User mailing list

● Primary developer of Spring Security (Acegi) Grails plugin

● Created UI Performance, Datasources, Twitter, Spring MVC,

and CodeNarc Grails plugins

● Technical Editor of Grails in Action

● 2008 Groovy Award winner

● http://burtbeckwith.com/blog/

● http://twitter.com/burtbeckwith

http://grails.markmail.org/search/?q=#query:list:org.codehaus.grails.user+page:1+state:facets
http://grails.org/plugin/acegi
http://grails.org/plugin/ui-performance
http://grails.org/plugin/datasources
http://grails.org/plugin/twitter
http://grails.org/plugin/springmvc
http://grails.org/plugin/codenarc
http://www.manning.com/gsmith/
http://burtbeckwith.com/blog/
http://twitter.com/burtbeckwith

Standard Grails One-to-Many

class Library {

String name

static hasMany = [visits: Visit]
}

class Visit {

String personName
Date visitDate = new Date()

static belongsTo = [library: Library]
}

Library has many Visits:

Standard Grails One-to-Many (cont.)

Library library = new Library(name: 'Carnegie').save()
...
library.addToVisits(new Visit(personName:'me'))
library.save()
...
library.addToVisits(new Visit(personName:'me2'))
library.save()

Usage:

● object-oriented approach to recording each visit to a library

● convenience method addToVisits() (along with corresponding
removeFromVisits()) handles adding to/removing from mapped
collection and cascading the save/delete

Standard Grails One-to-Many (cont.)

create table library (
id bigint generated by default as identity (start with 1),
version bigint not null,
name varchar(255) not null,
primary key (id)

);

create table visit (
id bigint generated by default as identity (start with 1),
version bigint not null,
library_id bigint not null,
person_name varchar(255) not null,
visit_date timestamp not null,
primary key (id)

);

alter table visit add constraint FK6B04D4B4AEC8BBA
foreign key (library_id) references library;

DDL (use “grails schema-export” to generate):

So What's the Problem?
● “hasMany = [visits: Visit]” creates a Set
(org.hibernate.collection.PersistentSet) in Library – the “inverse”
collection in traditional Hibernate

● Adding to the Set requires loading all instances from the database to
guarantee uniqueness, even if you know the new item is unique

● Likewise for a mapped List – Hibernate pulls the entire collection to
maintain the correct order, even if you're adding to the end of the list

● In traditional Hibernate you could map the collection as a Bag, which
is just a regular Collection with no ordering or uniqueness guarantees,
but Grails doesn't support Bags

So What's the Problem? (cont.)
● You get a false sense of security since it's a lazy-loaded collection
(by default); loading a Library doesn't load all Visits, but that's only
partially helpful

● Works fine in development when you only have a few Visits, but
imagine when you deploy to production and you have 1,000,000 Visits
and want to add one more

● Risk of artificial optimistic locking exceptions; altering a mapped
collection bumps the version, so simultaneous Visit creations can
break but shouldn't

Demo

Ok, So What's the Solution?

class Library {
String name

}

class Visit {
String personName
Date visitDate = new Date()
Library library

}

Remove the collection:

How does that affect usage?
Library library = new Library(name: 'Carnegie').save()
...
new Visit(personName:'me', library: library).save()
...
new Visit(personName:'me2', library: library).save()

● Different syntax for persisting a Visit

● No cascading; to delete a Library you need to delete its Visits first

● If you want to know all Visits for a Library, use a custom finder:
● def visits = Visit.findAllByLibrary(library)

● This is actually significantly more convenient since you can query for
the 10 most recent, just last month's visits, etc.:

● def last10 = Visit.executeQuery(
 "from Visit v order by visitDate desc", [max: 10])

How does this affect DDL?

create table library (
id bigint generated by default as identity (start with 1),
version bigint not null,
name varchar(255) not null,
primary key (id)

);

create table visit (
id bigint generated by default as identity (start with 1),
version bigint not null,
library_id bigint not null,
person_name varchar(255) not null,
visit_date timestamp not null,
primary key (id)

);

alter table visit add constraint FK6B04D4B4AEC8BBA
foreign key (library_id) references library;

Not at all, both approaches set visit.library_id:

Standard Grails Many-to-Many

class User {
static hasMany = [roles: Role]

String username
}

class Role {

static belongsTo = User
static hasMany = [users: User]

String name
}

User has many Roles, Roles have many Users:

Standard Grails Many-to-Many (cont.)

Role roleUser = new Role(name: 'ROLE_USER').save()
Role roleAdmin = new Role(name: 'ROLE_ADMIN').save()
…
User user1 = new User(username:'user1')
user1.addToRoles(roleUser)
user1.save()
...
User user2 = new User(username:'user2')
user2.addToRoles(roleAdmin)
user2.save()

Usage:

● object-oriented approach to assigning a Role to a User

● syntax is very similar to One-to-many

● convenience method addToRoles() (along with corresponding
removeFromRoles()) handles adding to/removing from mapped
collection and cascading the save/delete

Standard Grails Many-to-Many (cont.)

create table role (
id bigint generated by default as identity (start with 1),
version bigint not null,
name varchar(255) not null,
primary key (id)

);

create table user (
id bigint generated by default as identity (start with 1),
version bigint not null,
username varchar(255) not null,
primary key (id)

);

create table user_roles (
user_id bigint not null,
role_id bigint not null,
primary key (user_id, role_id)

);

alter table user_roles add constraint FK7342994952388A1A foreign key (role_id) references role;
alter table user_roles add constraint FK73429949F7634DFA foreign key (user_id) references user;

DDL (use “grails schema-export” to generate):

So What's the Problem?
● “hasMany = [users: User]” and “hasMany = [roles: Role]” create a Set
(org.hibernate.collection.PersistentSet) in both User and Role

● Adding a Role to a User's 'roles' Set requires loading all instances of
the User's Roles (for uniqueness check) AND all other Users who
already have that Role from the database

● This is because Grails automatically maps both collections for you
and populates both - “user.addToRoles(role)” and
“role.addToUsers(user)” are equivalent because it's bidirectional

● Works fine in development when you only have a few Users, but
imagine when you deploy to production and you have 1,000,000
registered site users with ROLE_MEMBER and want to add one more

● Risk of artificial optimistic locking exceptions; altering a mapped
collection bumps the version, so simultaneous Role grants can break
but shouldn't

Demo

Ok, So What's the Solution?
Remove the collections and map the join table:

class User {
String username

}

class Role {
String name

}

class UserRole implements Serializable {
User user
Role role
static mapping = {

table 'user_roles'
version false
id composite: ['user', 'role']

}
}

Ok, So What's the Solution? (cont.)

class UserRole implements Serializable {

...

static UserRole create(User user, Role role, boolean flush = false) {
UserRole userRole = new UserRole(user: user, role: role)
userRole.save(flush: flush, insert: true)
return userRole

}

static boolean remove(User user, Role role, boolean flush = false) {
UserRole userRole = UserRole.findByUserAndRole(user, role)
return userRole ? userRole.delete(flush: flush) : false

}

static void removeAll(User user) {
executeUpdate(

"DELETE FROM UserRole WHERE user=:user", [user: user])
}

}

Plus we can add in some helper methods to UserRole:

Ok, So What's the Solution? (cont.)

class User {

String username

Set<Role> getRoles() {
UserRole.findAllByUser(this).collect { it.role } as Set

}

boolean hasRole(Role role) {
return UserRole.countByUserAndRole(this, role) > 0

}
}

and restore a 'roles' pseudo-collection back in User:

How does that affect usage?

● Different syntax for granting a Role

● No cascading; to delete a User you you need to delete (disassociate)
its Roles first (use UserRole.removeAll(User user))

● In the unlikely case that you want to know all Users with a Role, use
a custom finder:

● def users = UserRole.findAllByUser(role).collect { it.user } as Set

User user = …
Role role = …
UserRole.create user, role
 – or –
UserRole.remove user, role

So Never Use Mapped Collections?
● No, you need to examine each case

● The standard approach is fine if the collections are reasonably small
– both sides in the case of Many-to-Many

● The collections will contain proxies, so they're smaller than real
instances until initialized, but still a memory concern

Using Hibernate 2nd Level Cache

dataSource {
pooled = true
driverClassName = 'com.mysql.jdbc.Driver'
url = ...
username = ...
password = ...
dialect = org.hibernate.dialect.MySQL5InnoDBDialect

}

hibernate {
cache.use_second_level_cache = true
cache.use_query_cache = true
cache.provider_class = 'org.hibernate.cache.EhCacheProvider'

}

DataSource.groovy:

Mapping in Domain Class
class Book {

…
static mapping = {

cache true
}

}

class Country {
…
static mapping = {

cache usage: 'read-only'
}

}

class Author {
static hasMany = [books:Book]
static mapping = {

books cache: true
}

}

Usage Notes
● The 1st level cache is the Hibernate Session

● Can significantly reduce database load by keeping instances in
memory

● Can be distributed between multiple servers to let one instance load
from the database and share updated instances, avoiding extra
database trips

● “cache true” creates a read-write cache, best for read-mostly objects
since frequently-updated objects will result in excessive cache
invalidation (and network traffic when distributed)

● “cache usage: 'read-only'” creates a read-only cache, best for lookup
data (e.g. Countries, States, Zip Codes, Roles, etc.) that never change

● DomainClass.get() always uses the 2nd-level cache

● By default nothing else always uses the cache but can be overridden

Configuring with ehcache.xml
● If you don't create an ehcache.xml file in the classpath (either grails-
app/conf or src/java) EhCache will use built-in defaults and you'll see
warnings at startup

<ehcache>

<diskStore path="java.io.tmpdir" />

<defaultCache
maxElementsInMemory="10000"
eternal="false"
...

/>

<cache name="com.foo.bar.Thing"
maxElementsInMemory="10000"
eternal="false"
overflowToDisk="false"
maxElementsOnDisk="0"

/>

Configuring with ehcache.xml (cont.)

<cache name="com.foo.bar.Zipcode"
maxElementsInMemory="100000"
eternal="true"
overflowToDisk="false"
maxElementsOnDisk="0"

/>

<cache name="org.hibernate.cache.StandardQueryCache"
maxElementsInMemory="50"
eternal="false"
overflowToDisk="false"
maxElementsOnDisk="0"
timeToLiveSeconds="120"

/>
<!-- timestamps of the most recent updates to queryable tables -->
<cache name="org.hibernate.cache.UpdateTimestampsCache"

maxElementsInMemory="5000"
eternal="true"
overflowToDisk="false"
maxElementsOnDisk="0"

/>
</ehcache>

Query Cache

def criteria = DomainClass.createCriteria()
def results = criteria.list {

cacheable(true)
}

Criteria queries:

DomainClass.withSession { session ->
return session.createQuery(

"select ... from … where ...")
.setCacheable(true)
.list()

}
}

HQL queries:

def person = Person.findByFirstName("Fred", [cache:true])

In dynamic finders (new in 1.1)

Hibernate query cache considered harmful?

● Most queries are not good candidates for caching; must be same query
and same parameters

● DomainClass.list() is a decent candidate if there aren't any (or many)
updates and the total number isn't huge

● Great blog post by Alex Miller (of Terracotta)
http://tech.puredanger.com/2009/07/10/hibernate-query-cache/

http://tech.puredanger.com/2009/07/10/hibernate-query-cache/

2nd Level Cache API

● evict one instance
● sessionFactory.evict(DomainClass, id)

● evict all instances
● sessionFactory.evict(DomainClass)

● evict one instance's collection
● sessionFactory.evictCollection('DomainClass.collectionName', id)

● evict all of DomainClass' collections
● sessionFactory.evictCollection('DomainClass.collectionName')

● Map cacheEntries = sessionFactory.statistics
 .getSecondLevelCacheStatistics(regionName)
 .entries

● sessionFactory.statistics (org.hibernate.stat.Statistics) methods:

● statistics.queryCacheHitCount

● statistics.queryCacheMissCount

● statistics.queryCachePutCount

● statistics.secondLevelCacheHitCount

● statistics.secondLevelCacheMissCount

● statistics.secondLevelCachePutCount

● statistics.secondLevelCacheRegionNames

2nd Level Cache API (cont.)

● statistics.getSecondLevelCacheStatistics(cacheName)
(org.hibernate.stat.SecondLevelCacheStatistics) methods:

● cacheStatistics.elementCountInMemory

● cacheStatistics.elementCountOnDisk

● cacheStatistics.hitCount

● cacheStatistics.missCount

● cacheStatistics.putCount

● cacheStatistics.sizeInMemory

2nd Level Cache API (cont.)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

